SSブログ

お前らに質問 (6月14日 ロピタルの定理) [お前らに質問]

お前らに質問 (6月14日 ロピタルの定理)

 

 

「大学入試でロピタルの定理を使うと減点される」など、様々な都市伝説が存在するロピタルの定理。

 

ロピタルの定理というのは、

aを実数または±∞とする。

  

または

  

のとき、

  

といったような感じの定理で――多くのヒトがこういう定理だと認識しているから、あえて正確に書かない!!――、0/0や∞/∞の不定形の極限計算に使われる、それはそれはありがたい定理だ。

 

では、お前らに質問。

 

次の答案は正しいか。

 

問題1 次の極限が存在すれば、その値を求めよ。

  

【答案】

x→0のとき、sinx→0、x²→0なので、これは0/0の不定形の極限。

よって、ロピタルの定理より

  

ropitar-01.pngであるが、

  

よって、

  

は存在しない。

したがって、

  

は存在しない。

(答案終)

 

のグラフは右の図のようになるから、

たしかに、なる極限は存在しない。

 

 

続いて、次の答案は正しいケロか。

 

 

 

問題2 次の極限が存在すれば、その値を求めよ。

  


【答案】

x→∞のとき、x+sinx→∞x→∞。したがって、これは∞/∞の不定形の極限なので、ロピタルの定理より

  

となる。

y=cos x graph.pngここで、

  

とおくと、n→∞のときx→∞

  

一方、

  

とおくと、n→∞のときx→∞

  

したがって、

極限

sonzaishinkya.png  

は存在しない。

ゆえに、極限

  

は存在しない。

(答案終)


 

そうですか、

  

なる極限は存在しないのですか(^^)

 

さぁ、この問題1、問題2の答案が正しいかどうか、お前らに答えてもらいましょうか。

 




念のために言っておくけれど、

  

というのは、という極限が存在すれば、上のようになるという意味だにゃ。

ここがヤバい箇所ってわけじゃないケロよ。

こういうところに茶々を入れだしたら、極限計算、特にロピタルの定理を使った解答は不正解、不正解じゃないまでも大量減点で点数がつかなくなってしまうにゃ。

 

 

ところで、

お前らが採点者ならば、問題1、問題2(ともに、満点20点)の答案に何点つける?

 

不幸にしてこの記事を読んでしまった奴は、おそらく、恐ろしくてロピタルの定理なんて二度と使う気にならないに違いない!!

 

 


nice!(0)  コメント(0) 
共通テーマ:音楽

第17回 コーシーの平均値の定理とロピタルの定理 [微分積分]

第17回 コーシーの平均値の定理とロピタルの定理

 

定理1 コーシーの平均値の定理

f(x)g(x)が閉区間[a,b]で連続、開区間(a,b)で微分可能、さらにg'(x)≠0ならば

  bs17-001.png

であるcが存在する。

【証明】

  

とおき、

  

とする。

h(x)は、[a,b]で連続、(a,b)で微分可能、かつ、h(a)=h(b)=0

ロールの定理より

  

となるcが存在する。

g'(x)a<x<bg'(x)≠0だから、g'(c)≠0

よって、

  bs17-002.png

である。

(証明終わり)

 

このコーシーの平均値の定理を用いると、の不定形の極限を求める時に用いられるロピタルの定理を証明することができる。

 

定理2 L'Hospital(ロピタル)の定理

関数f(x)g(x)は、点aを除く点aの近傍で微分可能で、かつ、g’(x)≠0であるとする。

このとき、

  

で、さらにが存在すれば、

  

である。

【証明】

だから、と考えてよい。

x>aのとき、閉区間[a,x]とすればg'(x)≠0だからコーシーの平均値の定理の条件を満たすので、

  bs17-003.png

となるa<c<xが存在する。

x→a+0のときc→a+0なので、

  bs17-004.png

x<aのとき、閉区間[x,a]とすればg'(x)≠0だからコーシーの平均値の定理の条件を満たすので、

  bs17-005.png

となるx<c<aが存在する。

x→a−0のときc→a−0なので、

  bs17-009.png

よって、

  bs17-003.png

(証明終)

 

の場合、x=1/tとおくと、t→0+0に対して、

  

となるので、a±∞の場合についても定理2を用いることができる。

 

また、の場合の証明の概要は次のとおり。

 

ある値x≠aを決めたとき、yをさらにaに近くとれば、g(y)は非常に大きくなるから、

  

とすることができる。

コーシーの平均値の定理から、このxyに関して、

  bs17-010.png

となるcxyの間に存在する。

よって、

  bs17-011.png

ここで、x→aの場合を考えると、y→ac→aだから

  bs17-012.png

したがって、のとき、

  bs17-014.png

が存在すれば、

  bs17-003.png

(注意)

正しくは、

  bs17-015.png

  bs17-016.png

 

 

問1 ロピタルの定理を用いて、次の極限を求めよ。

【解答(?)】

(1) 0/0の形の不定形の極限なので、ロピタルの定理より

  bs17-018.png

 

(2) 0/0の形の不定形の極限なので、ロピタルの定理より

  bs17-019.png

 

(3) 0/0の形の不定形の極限なので、、ロピタルの定理より

  bs17-020.png

 

(4) 0/0の形の不定形の極限なので、ロピタルの定理より

  bs17-021.png

 

(5)

  

と考えると、この極限は∞/∞の不定形の極限になり、ロピタルの定理を使うことができる。

  bs17-022.png

 

(解答終)

 

 

問2 次の極限値を求めよ。

bs17023.png

【解】

(1) 0/0の形なので、ロピタルの定理より

  

 

(2) ∞/∞の極限なので、ロピタルの定理より

  

 

(解答終)

 

問題 f''(x)が連続、f''(a)≠0のとき、平均値の定理より

  bs17-026.png

となるθは、であることを示せ。

【解】

平均値の定理より

  

よって、

  bs17-027.png

また、

  bs17-034.png

これを①に代入すると、

  bs17-031.png

さて、

  

f''(x)は連続だから、

  

よって、

  

(解答終)


nice!(0)  コメント(0) 

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。