SSブログ

よもや、こんなことが起こるとは(^^ゞ [ひとこと言わねば]

今日の夕方、京都大学を退職なされた冨田先生(京都大学名誉教授)からこのようなコメントをいただいた。

偶然見つけました。
私はすでに11年以上前に退職しましたので、元のページは閉鎖されています。
by 冨田博之 (2018-09-02 18:00)

まさか、ご本人からこのようなコメントをいただくことになるとは予想だにしていなかった。と同時に、このコメントをいただいたことを知ったとき、顔から火が出るような思いがした。
このようなことになるのであれば、ゴム弾性、ゴムパッチンの理論という記事は、もう少し真面目に書くべきだったな〜。
恥ずかしいったら、ありゃしない。

そして、冨田先生から、『熱力学』講義ノートが公開されているアドレスを紹介していただきましたので紹介します。
 『熱力学』講義ノート
 http://www7b.biglobe.ne.jp/~fortran/education/thermo/thermo.pdf

さらに、姉妹版ともいえる『統計物理学』講義ノートも。
 『統計物理学』講義ノート
 http://www7b.biglobe.ne.jp/~fortran/education/statis/statis.pdf

『熱力学』講義ノートは、基礎的事項から丁寧にしかも簡潔に記されており、また、熱力学に関係する重要な内容をほとんど網羅しているので、「熱力学とはどんな学問なのか」ということを知りたいと思うヒトは読んでみるといいと思う。特に、この講義ノートに記されているエピソードが面白いですよ。
使われている数学は偏微分と全微分だけなので、数学的な難しさはないと思う。とはいえ、その内容を正確に理解することはそれほど容易ではないと思う。

この他にも、物理学関係の記事が
 http://www7b.biglobe.ne.jp/~fortran/education/misc.html
などに多数紹介されているので、興味のあるヒトはご覧になってみてはいかがでしょうか。

なお、冨田先生のHPのアドレスは
 http://www7b.biglobe.ne.jp/~fortran/index.html#TOP


nice!(0)  コメント(3) 

さて、問題です、と、その答 [お前らに質問]

まず、次の動画を見て欲しいケロ!!


さて、問題です。
回転するプロペラのまわりに発生している泡の正体はなんでしょうか?
なぜ、こんな泡が発生するのでしょうか?


サービスして、この動画も♪


泡の正体は


nice!(4)  コメント(0) 
共通テーマ:音楽

光の波動性と粒子性 [ねこ騙し物理]

光の波動性と粒子性

 

Young-fig-1.png§1 ヤングの干渉実験

 

右図に示すように、幅の狭い2つのスリットを通過した光は、距離の違いにもとづく位相差によって、互いに強め合ったり、弱め合ったりして、壁面で明暗のある干渉縞が生じる。

光の波長をλとすると、光路差S₂P−S₁Pが波長の整数倍のところで明い、波長の半分の奇数倍のところで暗い、明暗をもった縞模様ができる。

三平方の定理より

  

となるので、光路差は

  

lxdより十分に大きいとき、

  

と近似することができる。

したがって、

  

 

Young-2.png

 

(※)

  

 

この2重スリットの干渉縞は、光を粒子と考えると説明がつかない。

ヤングの干渉実験によって、光の粒子説は命脈を絶たれ、「光の正体は波である」ということになった、とされている。

 

§2 光電効果

 

kouden-graph.png金属の表面に、光、特に、紫外線を照射すると、金属表面から電子が飛び出すことがある。これを光電効果といい、飛び出す電子を光電子という。

実験結果から、光電効果には次の特徴があることが知られている。

 1) 光を強くすると、飛び出す電子の数が増加するだけで、光電子の運動エネルギーは変わらない。

 2) 光電子の運動エネルギーの最大値はある光の振動数に関係し、振動数が増加するとともに大きくなる。また、限界振動数があり、それより小さい振動数の光をどんなに強く照射しても、光電子は飛び出さない。

 

右のグラフから、

  

といった実験式がすぐに得られと思うのだけれど、アインシュタインが光量子仮説を唱えるまで、誰も光電効果を説明することができなかった。

ちなみに、上の式のWを金属の仕事関数という。

 

この光電効果という現象は、光の波動説では説明できないんだケロ。

 

そこでアインシュタインは、「光はのエネルギーをもった粒子である」と考え、光電効果を次のように説明した。

光電子の最大運動エネルギーを、光の振動数をν、限界振動数をν₀とすると、

  

ここで、hはプランク定数。

そして、2つの式を比較すれば、仕事関数Wと限界振動数ν₀の間には、

  

という関係があることがわかる。

そして、アインシュタインは、この光量子仮説をもちいた光電効果の説明で、のちに、ノーベル賞を受賞することになる。

 

ヤングの干渉実験によって止めを刺されたはずの光の粒子説が復活し、「光の正体は粒子か波か」という振り出しに戻ってしまった(^^

そして、(理論)物理学は、混迷の時代へと突き進むのであった。




nice!(0)  コメント(0) 

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。