SSブログ
ベクトル解析 ブログトップ
前の10件 | 次の10件

第37回 円柱座標、極座標の勾配、発散、回転 [ベクトル解析]

第37回 円柱座標、極座標の勾配、発散、回転


前回、直交曲線座標の勾配、発散、回転を求めた。その結果は以下の通り。


勾配

  vec3602.png


発散

  


ラプラシアン

  


回転

  

  vec3608.png

ここで、hhh

  


ということで、よく使われる円柱座標、球(面)座標、すなわち、3次元の極座標の勾配、発散などの表示を求めることにする。


円柱座標の場合

円柱座標とは、以下のようなもの。
vec34fig01.jpg

  


円柱座標のhhhは第34回の問題1で求めた。その結果は、h₁=1h₂=rh₃=1

だから、円柱座標での勾配は
  


成分で書くと、

  

になる。

発散は、

  

ラプラシアンは

  


回転は

  


3次元の極座標(球座標)の場合

3次元の極座標は次のようなもの。
m_vec3302-75f66.gif

  

そして、このときh₁=1h₂=rh₃=rsinθになる。

勾配

  


発散

  


ラプラシアン

  


回転

  



第36回 直交曲線座標における勾配、発散、回転 [ベクトル解析]

第36回 直交曲線座標における勾配、発散、回転


勾配

uvwの関数をφ(u,v,w)とする。このとき、φの発散は次のようになる。

  

u=u(x,y,z)v=v(x,y,z)w=w(x,y,z)であるとすると、合成関数の偏微分の公式より
  vec3601.png

この結果を①に代入して整理すると、

  

になる。

また、

  

という関係があるので、
  vec3602.png

となる。


発散

A(u,v,w)u成分、v成分、w成分をそれぞれとすると、

  

となる。

ゆえに、

  

で、上の式の第1項に注目するのだけれど、ベクトルの微分には次のような公式がある。

  ∇a)=∇φa+φ∇a

また、u=v×w=(h₂∇v)×(h₃∇w)=hh₃∇v×∇wだから

  

で、さらに上の式の右辺第1項は
  

右辺第2項は

  

ゆえに

  

についても同様に

  

となる。

よって、

  

となる。

さらにA=∇φのとき

  

なので、
  

となる。


回転

  

だから、

  

右辺第1項は

  

×(∇u)=0だから
  

同様に

  

よって、

  

ということで、

  vec3608.png

となる。

以上のことより、結果をまとめると、
勾配
  vec3602.png
発散
  
ラプラシアン
  
回転
  
  vec3608.png



第35回 曲線座標の続き2 [ベクトル解析]

第35回 曲線座標の続き2


曲面S上の点rは2変数uvを用いて

  r=r(u,v)=(x(u,v),y(u,v),z(u,v))

とあらわすことができる。

kyokumen-uv2.jpg


そして、vを固定しuだけを変化させれば曲面S上で一つの曲線を描き、これをu曲線という。同様にuを固定しvだけを変化させればv曲線が得られる。

また、
  
はそれぞれu曲線の接線ベクトル、v曲線の接線ベクトルである。

uvをそれぞれu曲線、v曲線の単位接線ベクトルは

  

となる。そして、この曲面Sの単位法線ベクトルw

  

uvが直交する時は|u×v|は辺の長さが1の正方形の面積で1になるから

  w=u×v

になる。

u曲線、v曲線に直交し、こうして得られたwと向きが同じ曲線をw曲線とする。
第33回でやったけれど、uvwが直交するとき、線元素は
  

ただし

  

となるという話をした。

上の式を見ればわかるけれど、

  

だから、

  

また、

  

w曲線の接線ベクトルであり

  

となる。

さらに、ベクトル解析の番外編で述べたグロスマン記号なるものを使うと、

  

で、[uvw]は辺の長さ1の立方体の体積だから1だにゃ。

つまり、

  

になるにゃ。

また、33回で

  

になるということをやったにゃ。

だから、

  

で、[uvw]=1だから

  

そして、さらに

  

という関係が得られる。


問題 u=hh₃∇v×∇wv=hh₁∇w×∇uw=hh₂∇u×∇vであることを示せ。

【解】

  

同様に、v=hh₁∇w×∇uw=hh₂∇u×∇vとなる。


なにか書かないといけないから、書いただけだにゃ。

でも、こちらの方が第33回のu曲線、v曲線、w曲線の話よりはわかりやすいんじゃないか。33回で書いたu曲線、v曲線、w曲線の話は何を書いてあるのか、非常に分かりづらいから。


第34回 曲線座標の続き [ベクトル解析]

第34回 曲線座標の続き


vec3301.gif

前回、曲線座標の線元素ds

  

であること、ただし、

  


さらに、曲線座標の単位ベクトルuvw

  

になるというところまでやったにゃ。


で、曲線座標の代表的なものである球座表のh₁h₂h₃を求めることにするにゃ。


球座表、3次元の極座標とは次のようなもの。

vec3302.gif

  

だから、

    

となる。


問題1 円柱座標のh₁h₂h₃を求めよ。

【解】

vec34fig01.jpg

円柱座標は

  

だから、

  

zはそのままだから計算をする必要はないケロ!!


問題2 店の位置ベクトルをrとすれば

  

である。

【解】

uと∂r/∂uは同じ向きをもち、|u|=1|∂r/∂u|=h₁なので、

  

同様に、

  



そして、今回のメインである次の問題を解くことにする。


問題3 ベクトルAuvwの成分と直交軸に関するには次の関係があることを示せ。

  

いきなり解いてもいいのだけれど、「急がば廻れ」ということで遠回りする。


前回、方向余弦というものをやった。で、uの方向余弦をl₁m₁n₁vの方向余弦をl₂m₂n₂wの方向余弦をl₃m₃n₃とする。そうすると、

  

という関係が成立する。

  

Auの内積をとると、uvwはそれぞれが直交するから、uv=vw=wu=0で、

  

同様に、vwの内積をとると、

  

つまり、

  


方向余弦が与えられているとき、上の式が変換公式になる。


【解】

  

だから、

  

同様に、

  

となり、

  

となる。


ちなみに、

  

ね。同様に、

  



ベクトル解析の番外編 方向余弦 [ベクトル解析]

ベクトル解析の番外編 方向余弦


原点を始点とし点Aを終点とするベクトルを考えるケロ。

  

さらに、x軸、y軸、z軸とのなす角をαβγとする。

で、

  

方向余弦と呼ぶ。

ちなみに、分母は線分OAの長さ。

三平方の定理から

  

となる。

また、

  

となるので、方向余弦には

  

という関係がある。

ベクトルの大きさと方向余弦を使って

  

とあらわすことができる。


問題1 A(1,2,1)のとき、の方向余弦を求めよ。

【解】

  

よって、方向余弦は

  

になる。

問題2 点Aの位置ベクトルは、x軸とπ/4y軸とπ/3z軸とπ/6の角をなし、大きさは6である。Aの座標を求めよ。

【解】

  



これで終わるのはさすがに気が引けるにゃ。

ということで、ベクトルの3重積というものを少し話すにゃ。

ベクトルの3重積というのは、たとえば、

  a(b×c)


  a×(b×c)

というもの。

後ろのa×(b×c)ベクトル3重積と呼ばれる。a×(b×c)は結合法則、つまり、(a×b)×cは成り立たないケロよ。で、これは次のようになる。

  a×(b×c)=b(ac)−c(ab)

これは理屈ではなく、ひたすら機械的に外積の計算をすると、こうなる。

そして、これを知っていると、ハミルトン演算子∇

  

とあたかもベクトルのようにみなし、a=∇b=∇とすると

  ∇×(∇×c)=∇(∇c)−c(∇・∇)=∇(∇c)−(∇・∇)c

というベクトルの公式を導けるのであった。

また、a(b×c)はスカラーになるのでスカラー3重積という。
これは

  

になるという話はした。
で、特にこれを[abc]といったふうに書くことがある。これをグラスマンの記号という。

行列式の勉強をすると分かるのだけれど、[abc]=[bca]=[cab]という関係があるのであった。


第33回 曲線座標 [ベクトル解析]

第33回 曲線座標


直交座標xyzの関数
  u=F(x,y,z), v=G(x,y,z), w=H(x,y,z)   ①

があるとする。このとき、ヤコビアン

  

が0でなければ、①はx,y,zについて解くことができ、

  x=f(u,v,w), y=g(u,v,w), z=h(u,v,w)

が得られる。そして、x,y,zの値の一組にはu,v,wの値の一組が対応し、逆にu,v,wの値の一組に対してx,y,zの値の一組が対応するから、u,v,wの組を座標と考えることができ、これを曲線座標という。

いま仮にc₁を定数とし、u=c₁とすると、F(x,y,z)=c₁は一つの曲面をえがく。そして、c₁を変化させれば、曲面群が得られる。同様に、v=c₂w=c₃とすれば、2種類の曲面群が得られ、この3つの曲面群を座標曲面という。


たとえば、

  

だとする。u=c₁とすると、

  

となり、原点を中心とする半径c₁の球面がその曲面になる。そして、c₁の値を変化させれば、一つの曲面群が得られる。

そう言った話。


2つの座標曲面v=c₂w=c₃の交わりは曲線でこれをu曲線という。u曲線に沿っては、v=c₂w=c₃なので、vwは一定で、uの値だけが変化する。同様にして、w=c₃u=c₁の交わりをv曲線u=c₁v=c₂の交わりをw曲線という。


任意の点をPとすれば、Pを通るu曲線、v曲線、w曲線が一つずつ存在する。Pを始点とし、u曲線に接し、uの増加する向きに向かう単位ベクトルをuとする。同様に、v曲線、w曲線に接し、uvの増加する向きに向かう単位ベクトルをvwとする。


そうすると、下の図のような座標系が得られる。


vec3301.gif

で、各点で3つのベクトル、uvwが互いに直交するものとする。この時、このとき、uvw直交曲線座標という。なお、uvwは右手系をなすものとする。

(x,y,z)の位置ベクトルをrとすれば、線元素ds

  

曲線座標では、druvwの関数だから

  

そして、∂r/∂u、∂r/∂v、∂r/∂wuvwと同じ向きのベクトルであるから、それぞれが互いに直交する。

  

よって、

  

だから、

  

と置くと、

  

となる。

したがって、u曲線、v曲線,w曲線の弧長をそれぞれs₁s₂s₃とすると

  

となる。
直交曲線座標では、uは曲面u=c₁に垂直で、uの増加する向きに向かう単位ベクトルだから

  

v、∇wについても同様だから

  

したがって、u=h₁∇uv=h₂∇vw=h₃∇wになる。

ベクトルAを、その始点Pにおけるuvwの方向に分解して、

  

であるとする。このとき、をそれぞれ曲線座標uvwに関するAの成分、または、Au成分、v成分、w成分という。


このuvwは直交座標のijkとは異なり、始点Pの位置によって向きが変わるにゃ。


例として、3次元の極座標をあげることにするにゃ。


vec3302.gif


第32回 ベクトルの積分定理のプチ演習 [ベクトル解析]

第32回 ベクトルの積分定理のプチ演習



これまでにベクトルの積分の定理として

ガウスの発散定理

そして、

ストークスの定理

を学んできた。

Vは曲面Sに囲まれる領域、Sは閉曲線Cに囲まれた領域。

この2つを使ったプチ演習をやってみることにするにゃ。


問題1 閉曲線にそって

【解】

r=xi+yj+zkとする。

  

で、ストークスの定理より

  


【別解】

  


問題にはないけれど、∇×r=0だからr

  

というポテンシャルをもつ。

φの勾配∇φを求めると

  

となることから、φrのポテンシャルであることが確かめられる。



問題2 閉曲線に沿って

  

【解】

  ∇(φψ)=(∇φ)ψ+φ(∇ψ)=ψ(∇φ)+φ(∇ψ)

よって

  

ストークスの定理より

  

なぜならば、∇×{∇(φψ)}=0だから。

  


【別解】

  

よって、チョメチョメ。


問題3 A=2xyi+(x²−y²)jのとき、xy平面上で、原点から点(1,1,0)に至る曲線x=y²に沿ってのAの線積分を求めよ。

【解】

曲線C上の点をr=i+tj0≦t≦1)とすると、dr=(dx/dt)i+(dy/dt)j=(2ti+j)dtになる。

よって、

  

定義に従えば、こうなるのだけれど、この場合∇×A=0になっているので、実はこの線積分の値は経路によらない。

でだ、C₁x=y=t0≦t≦1)とすると、C₁上ではx²−y²=t²−t²=0になるので、

  

となる。

 


問題4 曲面Sで囲まれた領域の体積をVとすると

  

【解答】

  

だケロ。

で、問題の右辺にガウスの発散定理を使うと

  



問題5 A=axi+byj+czkabcは定数)のとき、原点を中心とする半径1の球面上のAの面積分を求めよ。

【解】

ガウスの発散定理を使ってくださいと言わんばかりの問題だケロ。

  
問題4と問題5のは曲面Sで囲まれた領域の体積。問題5の場合半径1の球の体積だから、この値は4π/3になる。

もうすこし本格的な問題を解きたいと思う人は次の問題に挑戦してください。


宿題 座標平面および3平面x=2y=2z=2で囲まれた立方体の表面をSとするとき、

S上のA=x²i+xyj+zkの面積分を求めよ。

(答)32



第31回 ソレノイド的なベクトル場 [ベクトル解析]

第31回 ソレノイド的なベクトル場


ある領域で恒等的にdiv A=∇A=0となるベクトル場を回転的、またはソレノイド的管状湧き出しなし)であるという。


領域Dで連続なベクトル場Aが他のベクトル場pによって

 A=rot p=∇×p

とあらわされるとき、Aはベクトルポテンシャルをもつといい、pAベクトルポテンシャルという。

A=∇×pのとき、∇・A=∇(∇×p)=0になるので、ベクトルポテンシャルをもつベクトル場はソレノイド的になる。


単連結領域において、A=∇×p₁=∇×pとあらわさせるとする。このとき、恒等的に∇×(p₁−p₂)=0が成り立つので、前回の定理よりp₁−pはスカラーポテンシャルφをもち、p₁−p₂=∇φとなる。

つまり、pがベクトル場Aの一つのベクトルポテンシャルであるとき、p+∇φもベクトルポテンシャルになる。

A=∇×pとすると、∇×(∇φ)=0だから、

  ∇×(p+∇φ)=∇×p+∇×(∇φ)=∇×p=A

となるので、p+∇φAのベクトルポテンシャルになっている。

では、単連結領域において非回転的であるとき、つまり、∇×A=0であるときスカラーポテンシャルφが存在するように、回転的なとき、つまり、∇・A=0のときベクトルポテンシャルpは存在するのかという問いに答えるのが、次の定理。


定理 全空間において連続な偏導関数をもつベクトル場Aがソレノイド的であるとき、A=rot p=∇×pとなるベクトルポテンシャルが存在する。

【証明】

任意の1点(x₀,y₀,z₀)を選びベクトルポテンシャルを次のように定義する。

  

この回転を計算すると、∇・p=0だから

  

となる。

同様に、

  

となる。したがって、このpAのベクトルポテンシャルである。

(証明終)


上の証明は何を書いているからわからないと思う。

  


  

という連立偏微分方程式の解の一つ。

として、②と③を解くと

  

で、これを①に代入すると

  

となって、④より

  

だから、

  

で、φ=0とすると

  

となり、
  vec3104.png

となる。


問題 ベクトル場A=xyi−zxj+(x²+y²)kが回転的であることを示し、かつ、そのベクトルポテンシャルを求めよ。

【解】
  vec3101.png

よって、回転的である。

混乱しないと思うから、ξxηxとするけれど、
  vec3202.png

を、x₀=0として使うにゃ。

  vec3203.png




第30回 非回転ベクトル [ベクトル解析]

第30回 非回転ベクトル


ストークスの定理

閉曲線Cで囲まれた領域S

である。

前回やったストークスの定理が今回の話の基本になります。


では、今回の話。


領域Dにおいて連続なベクトル場Aがスカラー場φによってA=grad φ=∇φであらわされるとき、Aポテンシャルをもつといい、φスカラーポテンシャルまたはポテンシャルという。


単連結

空間領域D内の任意の閉曲線を、D内で連続的に変形して1点に縮められるとき、D単連結という。たとえば、全空間、球面の内部、全空間から有限個の点を除いた領域などは単連結である。これに対して、全空間から1直線を取り除いた領域は単連結でない。

 


非回転なベクトル場

ある領域で恒等的にrot A=∇×A=0となるベクトル場A非回転的渦なし)であるという。

ポテンシャルφをもつベクトル場Aは∇×A=∇×(∇φ)=0になるので、非回転なベクトル場だケロ。


単連結領域DAは非回転なベクトル場とする。さらに、D内の任意の閉曲線をCをすると、閉曲線Cで囲まれた領域Sに対してストークスの定理が成り立ち

  

となる。

このことは、領域D内に任意の2点PQをとると、PからQへの曲線に沿っての線積分の値は曲線のとり方によらず一定で、始点Pと終点Qによって定まることを意味する。
次の図のようにABを異なる2本の曲線で結ぶ。

vec30fig1.jpg

そうすると、C=C₁+(−C₂)は閉曲線になり、ストークスの定理より

  

となり、PQを結ぶ曲線の経路によらないことがわかる。

つまり、非回転的なベクトル場では、線積分の値は積分経路によらず始点Pと終点Qで定まる。だから、道筋を示すことなく、

  

と書くことができる。

Pを固定し、点PQの位置ベクトルをrrとし

  

は、Dで定義されたスカラー場となる。

このφはベクトル場Aのポテンシャルなのだけれど、このことを次に証明するにゃ。


次の図のようにP₀を固定し、Pのごく近くの点をQとする。
pic.png

そうすると、

  

線分PP'に沿ってPからP'に至るとすると、dr=idxだから

  

平均値の定理を使うと

  

となり、

  

同様に、

  

となり、

  A=∇φ

となり、φAのポテンシャルである。

ここで、

  


ということで、

単連結な領域D

  1. ベクトル場Aがポテンシャルφをもつ。すなわち、A=∇φ

  2. ベクトル場Aが非回転的である。すなわち、恒等的に∇×A=0

  3. 任意の閉曲線Cに対してである

ことは同値、同じことだということになる。

さらに、定理を。


定理

単連結領域において連続な偏導関数をもつ非回転なベクトル場はポテンシャルをもち、そのスカラーポテンシャルは定数を除いて一意的に定まる。

【証明】

前半については既に証明しているので、一意性を証明する。

A=∇φ₁=∇φ₂とすると、∇(φ₁−φ₂)=0。よって、φ₁−φ₂=定数となる。

(証明終)

 


問題 A=(2x+yz,zx,xy)とするとき、次の問いに答えよ。

(1)Aが非回転であることを示せ。

(2)Aのポテンシャルを求めよ。

(3)C(1,0,−1)から(2,−1,3)に至る曲線とするとき、次の値を求めよ。

  
【解】

(1)

  vec3001.png


(2)∇×A=0なので、Aはポテンシャルをもつ。

  

で、
  vec3003.png

このことから、fzだけの関数であることがわかり、これをあらためてg(z)とする。

  vec3005.png

ということで、

  

となる。

(3)Aはポテンシャルを持つので、

  

(1,0,−1)(2,−1,3)を結ぶ線分は、だから、(x,y,z)=(t+1,−t,4t−1)0≦t≦1)として、線積分をしても良い。計算結果は一致するはずだにゃ。





第29回 ストークスの定理 [ベクトル解析]

第29回 ストークスの定理


向きづけられた曲面Sと境界の曲線Cを考える。境界Cの向き付けは下の図のようにする。

vec29fig1.jpg

ストークスの定理

曲面上の閉曲線Cで囲まれた領域Sにおいて、ベクトル場Aが連続な導関数をもつならば、

である。

A=Pi+Qj+Rkとし、成分で書けば

である。


この定理の証明は長いんで書きたくないのだけれど・・・。


【証明】

曲面S

   r=r(u,v)=(x(u,v),y(u,v),z(u,v))

とパラメータ表示され、曲線座標(u,v)に対する単位法線ベクトルはSの向きづけによるnと一致しているものとする。

  

平面におけるグリーンの定理より

  


(証明終)
上の証明に出てくる
  vec2902.png

はヤコビアン。

さらに、2行目から3行目の変形の過程で、合成関数の偏微分
  

を使っていて、このPQRに置き換えると、∂Q/∂u、∂Q/∂v、∂R/∂u、∂R/∂vが得られ、さらに式を整理すると3行目のになる。


これとは違う証明の方が一般的だけれど証明や説明がやたらと長いし、上の証明のスッキリしていてわかりやすいのではないだろうか。


どちらの証明であっても、何を書いているか分からないという点では同じと思うにゃ。


ガウスの発散定理と今回のストークスの定理に関しては結果が大事。


問題1 下の図に示す三角形PQRの辺をP→Q→R→Pと回る閉曲線をCとする。このとき、A=xyi+yzj+zxkの線積分

  

の値を次の2つの方法で求めよ。

vec29fig2.jpg

(1)直接、線積分を計算する。

(2)ストークスの定理を使う。

【解】

(1)PQは、x=1–y0≦y≦1)と表せ、PQではz=0だからA=xyi

よって、

  

同様に、

  

よって、

  


(2)Sの単位法線ベクトルn=(1/√3,1/√3,1/√3)。

  

よって、

  

となる。

また、S上ではx+y+z=1なので、

  

で、

  

なので、

  



は△PQRの面積。△PQRは1辺が√2の正三角形だから、

  

となる。

まぁ、z=1–x–yとし、重積分を使ってSの表面積、つまり、△PQRの面積を

  

としてもいいけれど、これはさすがに大袈裟というもの。

なお、DD={(x,y)|0≦x≦1,0≦y≦1–x}

問題2 閉曲線Cで囲まれた曲面Sについて、スカラー関数をφ(x,y,z)とすれば、

  

であることを示せ。

【解】

A=∇φとし、ストークスの定理を使うと

  

となる。

  ∇×∇φ=0

だから、

  


問題3 任意の閉曲線Cで囲まれた曲面Sについて

  

が成り立つとき、

  V=∇×A

である。(ストークスの定理の逆)

【解】

ストークスの定理から

  

よって、

  

で、任意の閉曲面であるから、V–∇×A=0、すなわち、V=∇×Aである。


上の問題2、3の内容は理論的にとても重要なものだケロ。





前の10件 | 次の10件 ベクトル解析 ブログトップ

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。