包絡線


αをパラメータとして含む曲線群

  

の各曲線と1点だけで接する曲線を包絡線という。

f(x,y,α)級とする。

曲線群と包絡線の接点を(x,y)とすると、xyαの関数である。

これを

  

とする。

(1)と(2)は接するのだから、

  

また、φ(α)ψ(α)f(x,y,α)=0上の点だから

  

これをαで微分すると、
  

ゆえに、包絡線は

  

の交点である。

逆に(4)の2つの方程式から

  

であるαの関数が存在するとする。

(4)より

  

(5)をαで微分すると、

  

(6)よりだから

  

したがって、でないならば接する。


少し補足説明する。


例えば、

  

という曲線(群)があるとする。

αの値を一つに固定すると、たとえば、α=1とすると、①は中心(1,0)、半径1の円になる。

次にα=1/2とすると、中心(1/2,0)、半径1/2の円になる。

このようにαを変化させれば、中心(α,0)、半径|α|の曲線群を得ることができる。

図から明らかなように、この曲線群は、αの値にかかわらず、y軸、つまり、x=0に接する。

つまり、x=0が①の包絡線ということになる。



問題1 次の曲線群の包絡線を求めよ。


【解】
(1) αで偏微分すると

  

で、

  

よって、包絡線は放物線y²=4x


(2)

  

①をαで偏微分すると、

  

①と②を2乗して足すと

  

よって、包絡線は原点を中心とする半径pの円。

(3)

  

αで偏微分すると、

  

したがって、

  

x=−1は包絡線。

x=0は特異点の軌跡。

(解答終了)

  

とすると、
  

したがって、x=0y=αは特異点。

また、

  

よって、(x,y)=(0,α)において

  

(0,α)は結節点で接線は2本引ける。

 


問題2 次の包絡線を求めよ。

(1) 円x²+y²=r²y軸に平行な弦を直径とする円の曲線群

(2) 座標軸で切り取られる部分の長さが一定である曲線群

【解】

(1) 弦の両端をAB、その中点をCとし、C(α,0)とする。

三角ACOは直角三角形だから、ABを弦とする円の半径AC
  

よって、円の方程式は

  

αで偏微分すると、

  

これを①に代入すると、

  


(2) 直線の方程式を

  

とすると、条件より

  

①をαで偏微分すると、
  

②をαで微分すると

  

③に代入すると、

  

とおくと、

  

これを①に代入すると、

  

②に代入すると、

  

④を②乗したものと⑤の辺々を掛けると、
  

よって、アステロイドになる。

(解答終了)