SSブログ

お前らに質問(6月17日、6月21日)の解答(?) [ひとこと言わねば]

お前らに質問(6月17日、6月21日)の解答(?)

 

 

問題(6月17日出題)

次の漸化式で表される数列の一般項を求めよ。

  

【解答例】

  

だから、数列は、初項a₂−2a₁=3−2=1、公比2の等比数列。

よって、

  

両辺をで割ると、

  

よって、数列は初項1/2、公差1/4の等差数列。

したがって、

  

(解答終)

 

 

問題(6月21日出題) 次の微分方程式を解け。

  

【解答例】

微分方程式の右辺を0とした同次方程式(微分方程式(1)の補助微分方程式)

  

の特性方程式とその解は

  

となるので、方程式(2)の一般解(余関数)は

が(1)の解であるとすると、

  

となるので、

  

よって、は(1)の特殊解である。

ゆえに、(1)の一般解は

  

(解答終)

 


nice!(3)  コメント(0) 

今日のアニソン、「されど罪人は竜と踊る」から『divine criminal』 [今日のアニソン]

今日のアニソンは、アニメ「されど罪人は竜と踊る」から『divine criminal』です。


アニメの設定がチートすぎるように思うけれど、お気に入りのアニメだにゃ。



nice!(0)  コメント(0) 

簡単に解けそうで、実は、簡単に解けない微分方程式 [微分方程式の解法]

簡単に解けそうで、実は、簡単に解けない微分方程式

 

 

この微分方程式は、ねこ騙し数学の訪問者ならば、簡単に一般解を求めてくれるに違いない。

  

じゃぁ、上の式を少し変えて、次のようにしたらどうだろうか。

  

ところがどっこい、これがとんでもなく難しい。

嘘だと思うならば、やってみそ!!

そして、お前ら全員、すぐに討ち死にすると思うにゃ。

 

たとえば、(2)の両辺をxで微分すると、

  

となって、ますます、手に負えなくなってしまう。

ならばと、

  

と全微分方程式に書き換え、積分因子λ(x,y)を求めるために、この両辺にかけるにゃ。

  

そこで、次の条件を使う。

  

今度は、この偏微分方程式を解く羽目に陥ってしまう。

そして、絶望する(笑)

 

それもそのはず、(2)は、一見、簡単な微分方程式に見えるけれど、これはリッカチ形の微分方程式と呼ばれるもの。

そして、このタイプの微分方程式は、形がどんなに簡単に見えたって、一部の例外を除き、解くのが恐ろしく難しい。

 

不思議なもので、

  

という微分方程式を解く方が(2)を解くよりもずっと難しいように思うだろうが、実際は(3)はベルヌーイ形の微分方程式と呼ばれるもので、こっちの方が解くのはずっと楽。

そして、運良く、(2)の特殊解の1つを見つけられると、(2)のようなリッカチ形の微分方程式は(3)のようなベルヌーイ形に書き換えることができ、解くことができるんだにゃ。

 ――ベルヌーイ形になるたって、こっから変数変換をして、線形の常微分方程式に書き換えなければならない。こうすることによって、初めて解ける形になる。

解くことができるというの理屈の上の話であって、これを三角関数や指数関数、対数関数を用いた初等的な関数を組み合わせて解を表せるという意味ではない。そして、これらで表せないとき、「解けない」というのであった(^^ゞ――

 

じゃぁ〜、(2)の特殊解を見つければいいじゃないかという話になるけれど、リッカチ形の微分方程式の特殊解を見つける一般的な方法なんてない。

勘と経験を頼りに、あれこれといろんな形の関数で試し、運がよければ、特殊解が見つかるかもしれない世界。まったくの運頼み。

たとえば、(2)の特殊解がxの多項式の形で表されると仮定し、その次数をnとする。すると、左辺はn−1次だね。右辺の次数は2n次だから、左辺と右辺の次数が一致するためには、n−1=2nだから、n=−1になってしまうケロ。つまり、(2)の特殊解には多項式の形のものはない。

分数関数みたいなのもダメ。

この式を見ただけで、sinxcosxのような単純な三角関数とその単純な組み合わせも駄目だし、指数関数や対数関数みたいなものがダメなのはすぐに想像がつく・・・。

すぐに、万策尽き、「こんなんじゃ、絶対にこの方程式は解けない」と、再び、絶望する。

 

2階の線形方程式に変換する方法とかあることはあるんだけれど、変換したところで、定数係数の線形方程式にはなりはしない。xの関数を係数にする2階の線形方程式になるのは必定。

 

てなわけで、某サイト(解くのコンピュータ)にお願いして、微分方程式(2)を解いてもらうことにした。

そうしたら、何ともおどろおどろしい答えが返ってきた。

  

 

ここに出てくるJというのは、第1種のベッセル関数と呼ばれる特殊関数。しかも、実関数の微分方程式なのに、虚数単位i²=−1が入っている(笑)。

愛(i)だね〜、愛。

 

それにしても、いったい、どんな形の微分方程式に変形してこの解を求めたのやら。謎だケロ。

 

微分方程式(2)は、ある変換を行うと、たぶん、次の微分方程式に変換できるはず。

  

(4)式は、エアリー方程式やストークス方程式と呼ばれるもので、この解は第一種エアリー関数と第2種エアリー関数の線型結合で表される。そして、これをxで微分して・・・。

そうすると、ベッセル関数が・・・。

たぶん。

 

こういう面倒な計算は、難しい微分方程式を解くのがお仕事の(理論系の)物理屋さんの領分だにゃ。昔からそう決まっている。だから、縄張りを犯してはいけい。

 

それはそれとして、ネムネコは物理屋さんじゃないから知らなかったけれど、どうも、(4)式はシュレ猫さんの生みの親であるシュレディンガーさんの方程式にも関係があるみたいだね。

 

この微分方程式は

  

は簡単に解けるけれど、1xに変えたらどうなるんだろう。

  

そんな素朴な疑問が出発点で、まさか、この方程式が量子力学、シュレ猫に、そして、惑星などの軌道計算まで関係するなんて、想像だにできなかった。

(2)は、超ミクロから超マクロに関係する、恐ろしく深い微分方程式だったんだね〜。

驚いたケロよ。

 

ところで、お利口なコンピュータさんは見事に微分方程式(2)を解いてくれたけれど、この解にはベッセル関数という特殊関数が入っているね〜。

そして、ベッセル関数というのは無限級数の形で表される関数で、しかも、その中にはガンマ関数という特殊関数が入っている。だから、解析的な解を求めたとしても、最終的には、コンピュータを使って近似計算をするしか手がないんだにゃ。

 

「結局、コンピュータを使わないといけないのだとしたら、最初から、オイラー法やルンゲ・クッタ法などを使って、近似計算させたらいいじゃない」

という話になると思わない?

 

厳密解の方は式の入力が大変だから代わりに2次のルンゲ・法を厳密解だと思って欲しいのだけれど、初期値をx₀=0y₀=1Euler法を使って、微分方程式(2)の数値解を計算させてみた。

 

 

お前らは、Euler法なんて精度が悪くてダメダメだというかもしれないけれど、実は、この微分方程式の場合、計算の格子間隔Δx=0.05くらいにとる、ほとんど正確に計算してしまうんだね〜。

「より高精度の4次のルンゲ・クッタ法の数値計算結果を比較参照の厳密解にすべきだ」というヒトもいるかもしれないけれど、この微分方程式の場合、2次のルンゲ・クッタ法と4次のルンゲ・クッタ法を使っても、その差は殆どない。

このことは、高精度計算が可能なカシオさんが公開してある計算サイトでも確かめてあるにゃ。

 

カシオさんの公開サイトのアドレスは次の通り。

https://goo.gl/YTC6mU

 

 

このように入力し、計算ボタンをクリックすると、計算してくれるにゃ。

そして、グラフをクリックすると、お絵かきまでしてくれる。

  toke-graph-003.png

非常に便利なサイトなので、ここで、色々と数値実験をしてみるといいと思うにゃ。

 


nice!(3)  コメント(1) 

今日のアニソン、「IS」から『STRAIGHT JET』 [今日のアニソン]

今日のアニソンは、アニメ「IS」から『STRAIGHT JET』です。


さらに、この曲を♪


nice!(2)  コメント(0) 

ボケるネムネコ [ひとこと言わねば]

ボケるネムネコ

 

 

ワールドカップが始まって寝不足なところに、真夏のような暑さが重なって、最近、かなりボケている。

このため、次の微分方程式を解けなかった(>_<)

 

問題 次の微分方程式を解け。

  

【頓挫した解法】

とおくと、

  

(頓挫)

 

ここから力技で解けないことはないだろうが、こんなに難しいはずがない。

そこで、だいぶ前に解いたやつを見てみた。

 

第16回 階数を下げる方法

https://nekodamashi-math.blog.so-net.ne.jp/2017-08-24-4

 

【だいぶ前にといた解】

とすると、この微分方程式は

  

したがって、

  

(解答終)

 

これを見たとき、思わず、目が点になってしまったケロよ。

何で、わざわざ、解けない(解きにくい)形に微分方程式を変形し、解こうとしたのだろう・・・。

 

ここはひとまず、

「きっと、ワールドカップのTV観戦による睡眠不足とここのところの暑さで頭が正常に機能しないためだ」ということにしておこう。

 

それにしても、いったん、思考の袋小路に陥ると、視野狭窄になってその迷路から抜け出せないのだから、怖いね〜、ホント。

 

 

 

ところで、とあるところで次のような問題を見つけた。

 

問題 次の微分方程式の完全解(?)を求めよ。

  

【解答(?)】

  

ところで、y=±1は微分方程式の(特異)解で、これは正弦曲線y=sin(x+c)と滑らかにつながっている。

これより、完全解は、y=1またはy=−1、または

  

(解答終)

 

この完全解という用語の使用が適切かどうかは別にして、

「微分方程式の解(一般解)y=sin(x+c)の導関数y'は負になるが、元の微分方程式のy'は負にならない」

といったような記述があって、

「確かにそうだな」と思った。

 

最近、鈍ってるからな〜、オレ(^^ゞ

 


nice!(0)  コメント(0) 

お前ら、この問題を解くにゃ 微分積分 [高校の微分積分]

ネムネコが高校生のときに使っていた参考書を覗いていたら、「ちょっと面白い(総合)問題だな」と思う問題を見つけたので、解いてみるといいにゃ。

 

Mondai-graph-000.png問題 半径1の半球がある。いま、底面に平行な平面αで切ったとき、2つの部分が等しくなったとする。

(1) xのみたす方程式を導け。

(2) 右のグラフを用いて、xの方程式を求めよ。なお、求め方も述べよ。

(3) (2)で求めたxの近似値を用いて、その値を小数第2位まで正確に求めよ。

 

カビが生えるほど古い問題でだけど、難しい問題ではないので、チャレンジしてみるといいと思うにゃ。

 

解けたヒトは、解答をコメント欄に書いて送信すると、ネムネコがそれを清書し(場合によってはグラフなどもつけて)、このブログで紹介するにゃ。



解答もどき


nice!(0)  コメント(0) 

今日のアニソン、「ガールズ&パンツァー」から『抜刀隊』 [今日のアニソン]

今日のアニソンは、「ガールズ&パンツァー」から『抜刀隊』です。


さらに、この曲を♪



nice!(2)  コメント(0) 
共通テーマ:音楽

微分方程式のよもやま話20 微分演算子法 [微分方程式の解法]

微分方程式のよもやま話20 微分演算子法

 

 

次の微分方程式がある。

(1)の両辺にをかけることにより、(1)は次のように解くことができる。

  yomo20-001.png

と指数関数の場合、

  yomo20-002.png

右辺第2項の積分は、

b≠aのとき、

  

b=aのとき

  

となる。

したがって、(1)の微分方程式の一般解は

  yomo20-003.png

になる。

 

(3)の右辺第2項の積分の部分は、公式

  yomo20-004.png

を用いて、次のように計算することもできる。

a≠bのとき、

  

a=bのとき、

  

 

微分演算子法を用いると、(3)の右辺第2項の積分をすることなく、代数的に解くことができる。

とはいえ、こうした計算ができるのはf(x)が指数関数のとき。f(x)が多項式関数の場合、こうした計算は許されない。

 

問1 次の微分方程式を解け。

  

【解法1(初等的解法)】

微分方程式の両辺にをかけると

  

(解答終)

 

【解法2(微分演算子法)】

補助微分方程式は

  

の一般解(余関数)は

  

微分方程式の特殊解をy₀とすると、

  

よって、微分方程式の一般解は

  

(解答終)

 

(※)

  

 

問1はf(x)=xと簡単だから、積分したところでたいして難しくないけれど、f(x)=x²+x+1となったら、この積分は結構面倒くさい。なんとか、この積分の計算をせずにすむ方法はないものかと考えるのは人情だケロ。

そうした要望に答える方法が存在するのであった。

 

まず、

  

とテーラー展開(マクローリン展開)するにゃ。

すると、

  

さらに、

  

と、積分を一切することなく、

  

の値(関数か?)を求めることができるのであった。

 

  

 

すごいと思わないケロか?

 

問2 次の微分方程式を解け。

  

【解】

右辺を0とおいた補助微分方程式

  

の一般解(余関数)は

  

特殊解をy₀とすると

  

よって、

  yomo20-000.png

(解答終)

 

あるいは、

  

などと計算する。

 

演算子法を用いた解法(特殊解の発見法)の計算が楽か(正確にいえば、答案の形式に書くことが楽か)といえば大いに疑問だけれど、積分することなく、特殊解を見つけることができる。

 

これらのテーラー展開(マクローリン展開)には

  

を用いていることは言うまでもない。

 

 


nice!(1)  コメント(0) 

微分方程式のよもやま話19 初等的解法と演算子法 [微分方程式の解法]

微分方程式のよもやま話19 初等的解法と演算子法

 

 

αβを実数とする。

微分方程式

 yomo19-000.png 

の初等的な解法について考える。

 

  

とおくと、(1)は次のように書き換えることができる。

  

この両辺にをかけると、

  

これをyの微分方程式に戻すと、

  

この両辺にをかけると、

  

β≠αのとき、

  

ここで、

  

とおけば、(1)の一般解は

  

である。

αβのとき、

  

よって、(1)の一般解は

  

ここで、C₁C₂は任意定数。

 

したがって、

α≠βの場合は、

  

αβのときは

  

を計算することにより、特殊解を求めることができる!!

 

さて、次の微分方程式について考える。

  

これは次の微分演算子

  

を用いると、次のように書き換えることができる。

  

したがって、

  

となる。

ところで、(5)の一般解は

  

なので、

  

 

したがって、

  

となる。

特に、α=βのとき、

  

 

このようにして求めた(9)、(10)と(3)、(4)と一致する。

 

ここで

  

さらに、

  

とおくと、(9)より、

  

c≠βのとき

  

よって、c≠αのとき

  

となる。

 

前々回の公式

  

を導くことができた。

 

 


nice!(0)  コメント(0) 

不定積分の公式追加 [微分積分]

不定積分の公式追加

 

問題1 次の不定積分を求めよ。

  

【解】

t=tan xとおくと、

  

したがって、

  

(解答終)

 

(参考)

  



問題2 次の不定積分を求めよ。

  

【解】

とおくと、

  

したがって、

  fute-000.png

a=1のとき、

  

a=−1のとき、

  

よって、

a²=1のとき、

  

また

  

a²>1のとき、

  

よって、

  fute-002.png

a²<1のとき、

  

とおくと、

  

だから、

  

よって、

  

ゆえに、

a²=1のとき

  fute-005.png

a²>1のとき

  fute-006.png

a²<1のとき

  fute-008.png

(解答終)

 


問題2は、aの値によって、不定積分の関数形が変わるという例。

「我こそは」と思うヒトは、

  

  

の不定積分を求めてみるといいと思うにゃ。

 


nice!(2)  コメント(0) 

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。